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We have a viable polar-drive fill-tube target, a concept for the 
layering sphere that can meet the space constraints of the 
NIF, and we are adding infrastructure for tritium operations
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Summary

•	 Planning for cryogenic polar-drive experiments on the NIF in FY17

•	 Tested different fill-tube configurations and have demonstrated  
a viable structure

•	 Demonstrated an operational cryogenic system that must be 
integrated with the NIF-ITIC

–	 modifying the system for DT operations—ready January 2013

•	 In the process of miniaturizing the target’s thermal environment  
to allow for easier integration with the existing NIF-ITIC

•	 We have final engineering drawings for the tritium containment 
and handling equipment



The baseline NIF polar-drive target design  
uses ice-layer shimming
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T2 D2Double-sided
magnetically
actuated ram Using an additional fiber to support 

the target is ineffective

Al membranes

The fragile fill-tube assembly strongly influences  
the design of the Cryogenic System
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Fill-tube diameter = 30 nm

Fuel thickness = 350 nm

Reservoir volume = 3.4 ml

Fill pressure = 72 psia

Fuel remaining in reservoir
at 18.7 K = 38% of total

Fuel inventory = 21 Ci

Peformance statistics:

2 of 13 targets tested in 
the Cryogenic Test System 
over two years did not leak
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General Atomics is working to characterize the performance 
of the fill-tube assembly and to improve its robustness
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•	 No target survived 12-g impulses (3 tests)

Courtesy J. Hund, General Atomics



A first generation design of the thermal envelope  
that surrounds the target is functional 
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•	 This design provided performance metrics for future improvements—
addressed by LLE’s Target Group

•	 The surrounding mechanics and interfaces with the NIF-ITIC  
will be addressed by LLE’s and LLNL’s engineering groups
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Demonstrated control of the ice-layer thickness  
to ±3 nm and the ability to form a stable D2 ice layer—
sufficient to progress to DT operations
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•	 343-nm D2 ice layer inside a 3.01-mm-diam capsule 
with 20-nm wall and a 30-nm-diam fill tube
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Layering sphere/target Target/ice layer

Fill-tube/glue

Very fine
mesh for
fill-tube
glue region

Fine mesh
for ice zone

A thermal model of the target, fill tube, and layering sphere 
is used to refine the design of the cryogenic equipment
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Mesh Parameters
	 Minimum volume:	 18 nm3

	 Maximum volume:	 0.8 mm3

	Minimum surface area:	 10 nm2

	Maximum surface area:	 6 mm2

		  18 × 106 cells
		  36 × 106 faces



A thermal model of the target, fill tube, and layering sphere 
is used to refine the design of the cryogenic equipment
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Temperature boundary conditions 
taken from measurements  
in the D2 experiments

3.3-mm-diam capsule and 16-mm  
inner-diameter (i.d.) layering sphere 

Design variables 
•	 layering-sphere inner diameter
•	 entrance hole length
•	 entrance hole diameter
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Calculation parameters:
•	 Time step: 0.2 s
•	 Convergence (energy residual): 1 × 10–12 
•	 Run time: ~4 min/iteration—7 to 10 days on an 8-processor, 24-GB system



Calculations predict that a layering sphere with a diam (16 mm) 
that is one-half of the current system will be acceptable
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Calculated ice distribution 
for a 2-D slice through the target 

217-nm thick ice layer

Calculated 2-D power spectrum

Polar plot showing the azimuthal variation 
of the ice surface from a circle
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•	 Calculated rms roughness affected  
by the mesh resolution and 
interpolation within each voxel  
at the ice/gas interface

•	 No effect due to the fill tube  
(30-nm o.d., 10-nm i.d.)



Calculated 2-D power spectrum

Polar plot showing the azimuthal variation 
of the ice surface from a circle
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Re-entrant cylinders at the north and south poles of the layering 
sphere perturb the ice layer by an amount that can be controlled
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Experiments and additional thermal 
modeling with a finer mesh are 
planned. Sensitivity of the ice 
distribution to the target’s position 
and the gas pressure need to be 
determined.



Effect of a 200-nm o.d. fill tube on the ice layer (16.5-nm rms)

5 nW coupled into the fill tube offsets the added heat flux
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Increasing the thickness of the fill tube to make  
it more stable and robust perturbs the ice layer;  
heating the fill tube offsets the effect
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While a larger fill tube will affect the implosion performance, 
the effect of the fill tube on the ice layer can be mitigated.



A tritium source, clean-up systems, and containment  
are being added to the existing cryogenic equipment  
to qualify the layering-sphere design
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Summary/Conclusions

We have a viable polar-drive fill-tube target, a concept for the 
layering sphere that can meet the space constraints of the 
NIF, and we are adding infrastructure for tritium operations

•	 Planning for cryogenic polar-drive experiments on the NIF in FY17

•	 Tested different fill-tube configurations and have demonstrated  
a viable structure

•	 Demonstrated an operational cryogenic system that must be 
integrated with the NIF-ITIC

–	 modifying the system for DT operations—ready January 2013

•	 In the process of miniaturizing the target’s thermal environment  
to allow for easier integration with the existing NIF-ITIC

•	 We have final engineering drawings for the tritium containment 
and handling equipment


